Low monoamine oxidase B in peripheral organs in smokers
Fowler JS, Logan J, Wang GJ, Volkow ND, Telang F,
Zhu W, Franceschi D, Pappas N, Ferrieri R, Shea C,
Garza V, Xu Y, Schlyer D, Gatley SJ, Ding YS, Alexoff D,
Warner D, Netusil N, Carter P, Jayne M, King P, Vaska P.
Chemistry Department and Medical Department,
Brookhaven National Laboratory,
Upton, NY 11973.
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11600-5.


One of the major mechanisms for terminating the actions of catecholamines and vasoactive dietary amines is oxidation by monoamine oxidase (MAO). Smokers have been shown to have reduced levels of brain MAO, leading to speculation that MAO inhibition by tobacco smoke may underlie some of the behavioral and epidemiological features of smoking. Because smoking exposes peripheral organs as well as the brain to MAO-inhibitory compounds, we questioned whether smokers would also have reduced MAO levels in peripheral organs. Here we compared MAO B in peripheral organs in nonsmokers and smokers by using positron emission tomography and serial scans with the MAO B-specific radiotracers,l-[11C]deprenyl and deuterium-substituted l-[11C]deprenyl (l-[11C]deprenyl-D2). Binding specificity was assessed by using the deuterium isotope effect. We found that smokers have significantly reduced MAO B in peripheral organs, particularly in the heart, lungs, and kidneys, when compared with nonsmokers. Reductions ranged from 33% to 46%. Because MAO B breaks down catecholamines and other physiologically active amines, including those released by nicotine, its inhibition may alter sympathetic tone as well as central neurotransmitter activity, which could contribute to the medical consequences of smoking. In addition, although most of the emphases on the carcinogenic properties of smoke have been placed on the lungs and the upper airways, this finding highlights the fact that multiple organs in the body are also exposed to pharmacologically significant quantities of chemical compounds in tobacco smoke.
Yale study
The cheese effect
Alzheimer's disease
Selegiline and nitric oxide
Selegiline for longer-lived flies
Selegiline and life-expectancy
Selegiline as an immunostimulant
Selegiline for cocaine dependence
Selegiline and Parkinson's disease
Selegiline, growth hormone and rats

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family